Search results for "Phase slip"
showing 10 items of 10 documents
Corrigendum: The quantum phase slip phenomenon in superconducting nanowires with a low-Ohmic environment
2013
Evidence of quantum phase slip effect in titanium nanowires
2012
Electron transport properties of titanium nanowires were experimentally studied. Below the effective diameter $\lesssim$ 50 nm all samples demonstrated a pronounced broadening of the $R(T)$ dependencies, which cannot be accounted for thermal flcutuations. An extensive microscopic and elemental analysis indicates the absence of structural or/and geometrical imperfection capable to broaden the the $R(T)$ transition to such an extent. We associate the effect with quantum flucutuations of the order parameter.
Quantum fluctuations in superconducting nanostructures
2014
Modern nanofabrication technology enableTfabrication of very narrow quasi-1-dimensional superconducting nanowires demonstrating finite resistivity within the range of experimentally obtainable temperatures. The observations were reported in ∼10 nm nanowires of certain superconducting materials. The effect has been associated with quantum phase slip process - the particular manifestation of quantum fluctuations of the order p arameter. In titanium, the phenomenon can be observed already at dimensions ∼35 nm where the fabrication is well reproducible and the dimensions of samples can be characterized with high accuracy. We have performed systematic study of the size dependence of transport pr…
Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing
2019
Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…
Eckhaus instability of stationary patterns in hyperbolic reaction–diffusion models on large finite domains
2022
AbstractWe have theoretically investigated the phenomenon of Eckhaus instability of stationary patterns arising in hyperbolic reaction–diffusion models on large finite domains, in both supercritical and subcritical regime. Adopting multiple-scale weakly-nonlinear analysis, we have deduced the cubic and cubic–quintic real Ginzburg–Landau equations ruling the evolution of pattern amplitude close to criticality. Starting from these envelope equations, we have provided the explicit expressions of the most relevant dynamical features characterizing primary and secondary quantized branches of any order: stationary amplitude, existence and stability thresholds and linear growth rate. Particular em…
Phase Slip Phenomena in Ultra-Thin Superconducting Wires
2006
We present results on phase-slip phenomena in a superconducting wire which can be considered as quasi-one dimensional (1D) if its characteristic transverse dimension \( \sqrt \sigma\) (√ being the cross section) is smaller than the coherence length Λ(T). The shape of the bottom part of the resistive transition R(T) of a 1D superconducting strip is described by the model of phase slips activation. If the wire is infinitely long, then there is always a finite probability that a small part of the sample is instantly driven normal.
Coherent Quantum Phase Slip
2014
Three-Dimensional Superconducting Nanohelices Grown by He
2019
Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…
High dynamic resistance elements based on a Josephson junction array
2020
A chain of superconductor–insulator–superconductor junctions based on Al–AlOx–Al nanostructures and fabricated using conventional lift-off lithography techniques was measured at ultra-low temperatures. At zero magnetic field, the low current bias dynamic resistance can reach values of ≈1011 Ω. It was demonstrated that the system can provide a decent quality current biasing circuit, enabling the observation of Coulomb blockade and Bloch oscillations in ultra-narrow Ti nanowires associated with the quantum phase-slip effect.
Experimental limits of the observation of thermally activated phase-slip mechanism in superconducting nanowires
2007
The shape of experimentally observed $R(T)$ transition of thin superconducting wires is analyzed. From theoretical point of view, broadening of the transition in quasi-one-dimensional superconducting channels is typically associated with phase-slip mechanism. It is shown that such interpretation can be misleading if to consider geometrical inhomogeneity and finite dimensions of real samples studied in experiments. The analysis is based on experimental fact that for many superconducting materials the critical temperature depends on the characteristic dimension of a sample: film thickness or wire cross section.